jsLaTeX Demos, by Andreas Grech

\int_{0}^{\pi}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx =\frac{22}{7}-\pi

Simple

$(".latex1").latex()
\int_{0}^{\pi}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx =\frac{22}{7}-\pi

Different engine

$(".latex2").latex({url: 'http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq={e}'});
\int_{0}^{\pi}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx =\frac{22}{7}-\pi

Callback

$(".latex3").latex({
	callback: function () {
		this.css({border: '1px solid black'});
	}
});
\int_{0}^{\pi}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx =\frac{22}{7}-\pi

Combination

$(".latex4").latex({
	url: 'http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq={e}',
	callback: function () {
		this.css({border: '2px solid red'});
	}
});
\int_{0}^{\pi}\frac{x^{4}\left(1-x\right)^{4}}{1+x^{2}}dx =\frac{22}{7}-\pi

Other examples

\setlength{\unitlength}{1mm}\begin{picture}(60, 40)\put(30, 20){\vector(1, 0){30}}\put(30, 20){\vector(4, 1){20}}\put(30, 20){\vector(3, 1){25}}\put(30, 20){\vector(2, 1){30}}\put(30, 20){\vector(1, 2){10}}\thicklines\put(30, 20){\vector(-4, 1){30}}\put(30, 20){\vector(-1, 4){5}}\thinlines\put(30, 20){\vector(-1, -1){5}}\put(30, 20){\vector(-1, -4){5}}\end{picture}
\setlength{\unitlength}{1mm}\begin{picture}(60, 40)\put(30, 20){\vector(1, 0){30}}\put(30, 20){\vector(4, 1){20}}\put(30, 20){\vector(3, 1){25}}\put(30, 20){\vector(2, 1){30}}\put(30, 20){\vector(1, 2){10}}\thicklines\put(30, 20){\vector(-4, 1){30}}\put(30, 20){\vector(-1, 4){5}}\thinlines\put(30, 20){\vector(-1, -1){5}}\put(30, 20){\vector(-1, -4){5}}\end{picture}
\begin{aligned}x^2+4x-21&=0\\x^2+4x&=25\\x^2+4x+4&=21+4\\(x+2)^2&=25\\x+2&=\pm 5\\x&=-2\pm 5\end{aligned}
\begin{aligned}x^2+4x-21&=0\\x^2+4x&=25\\x^2+4x+4&=21+4\\(x+2)^2&=25\\x+2&=\pm 5\\x&=-2\pm 5\end{aligned}
\left(\begin{array}{clrr}a+b+c & uv & x-y & 27 \\x+y & w & +z & 363 \end{array}\right)
\left(\begin{array}{clrr}a+b+c & uv & x-y & 27 \\x+y & w & +z & 363 \end{array}\right)
\sigma_{3} = \left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right)
\sigma_{3} = \left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right)
\Delta = \frac{\partial U^*}{\partial F} = \frac{12F}{Eb} \int_0^L \frac{x^2}{(t_0 + \alpha x)^3} dx
\Delta = \frac{\partial U^*}{\partial F} = \frac{12F}{Eb} \int_0^L \frac{x^2}{(t_0 + \alpha x)^3} dx